Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Neurovirol ; 29(6): 699-705, 2023 12.
Article in English | MEDLINE | ID: mdl-37898570

ABSTRACT

Tick-borne encephalitis (TBE) is a neuroviral disease that ranges in severity from a mild febrile illness to a severe and life-threatening meningoencephalitis or encephalomyelitis. There is increasing evidence that susceptibility to tick-borne encephalitis virus (TBEV)-induced disease and its severity are largely influenced by host genetic factors, in addition to other virus- and host-related factors. In this study, we investigated the contribution of selected single nucleotide polymorphisms (SNPs) in innate immunity genes to predisposition to TBE in humans. More specifically, we investigated a possible association between SNPs rs304478 and rs303212 in the gene Interferon Induced Protein With Tetratricopeptide Repeats 1 (IFIT1), rs7070001 and rs4934470 in the gene Interferon Induced Protein With Tetratricopeptide Repeats 2 (IFIT2), and RIG-I (Retinoic acid-inducible gene I) encoding gene DDX58 rs311795343, rs10813831, rs17217280 and rs3739674 SNPs with predisposition to TBE in population of the Czech Republic, where TBEV is highly endemic. Genotypic and allelic frequencies for these SNPs were analyzed in 247 nonimmunized TBE patients and compared with 204 control subjects. The analysis showed an association of IFIT1 rs304478 SNP and DDX58 rs3739674 and rs17217280 SNPs with predisposition to TBE in the Czech population indicating novel risk factors for clinical TBE but not for disease severity. These results also highlight the role of innate immunity genes in TBE pathogenesis.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Humans , Encephalitis, Tick-Borne/genetics , Encephalitis, Tick-Borne/epidemiology , Genotype , Polymorphism, Single Nucleotide , Interferons/genetics , Immunity, Innate/genetics , Encephalitis Viruses, Tick-Borne/genetics
2.
Cell Rep ; 42(9): 113149, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37715951

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a flavivirus that causes human neuroinfections and represents a growing health problem. The human monoclonal antibody T025 targets envelope protein domain III (EDIII) of TBEV and related tick-borne flaviviruses, potently neutralizing TBEV in vitro and in preclinical models, representing a promising candidate for clinical development. We demonstrate that TBEV escape in the presence of T025 or T028 (another EDIII-targeting human monoclonal antibody) results in virus variants of reduced pathogenicity, characterized by distinct sets of amino acid changes in EDII and EDIII that are jointly needed to confer resistance. EDIII substitution K311N impairs formation of a salt bridge critical for T025-epitope interaction. EDII substitution E230K is not on the T025 epitope but likely induces quaternary rearrangements of the virus surface because of repulsion of positively charged residues on the adjacent EDI. A combination of T025 and T028 prevents virus escape and improves neutralization.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Humans , Antibodies, Viral , Epitopes , Antibodies, Monoclonal
3.
Vaccine ; 41(42): 6150-6155, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37716828

ABSTRACT

Tick-borne encephalitis (TBE) is a severe neuroinfection of humans. Dogs are also commonly infected with tick-borne encephalitis virus (TBEV). These infections are usually asymptomatic, but sometimes show clinical signs similar to those seen in humans and can be fatal. To date, there is no TBEV vaccine available for use in dogs. To address this need, a TBEV vaccine candidate for dogs based on inactivated whole virus antigen was developed. The safety, immunogenicity, and efficacy of the vaccine candidate were tested in mice as the preclinical model and in dogs as the target organism. The vaccine was well tolerated in both species and elicited the production of specific anti-TBEV antibodies with virus neutralising activity. Vaccination of mice provided complete protection against the development of fatal TBE. Immunisation of dogs prevented the development of viremia after challenge infection. Therefore, the developed vaccine candidate is promising to protect dogs from severe TBEV infections.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Viral Vaccines , Humans , Animals , Dogs , Mice , Encephalitis, Tick-Borne/prevention & control , Encephalitis, Tick-Borne/veterinary , Antibodies, Viral , Vaccination , Immunization
4.
J Travel Med ; 30(5)2023 09 05.
Article in English | MEDLINE | ID: mdl-37133444

ABSTRACT

BACKGROUND: Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway. METHODS: A fast acoustic biosensor with an antifouling nano-coating was introduced to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on exposed surfaces in the Prague Public Transport System. Samples were measured directly without pre-treatment. Results with the sensor gave excellent agreement with parallel quantitative reverse-transcription polymerase chain reaction (qRT-PCR) measurements on 482 surface samples taken from actively used trams, buses, metro trains and platforms between 7 and 9 April 2021, in the middle of the lineage Alpha SARS-CoV-2 epidemic wave when 1 in 240 people were COVID-19 positive in Prague. RESULTS: Only ten of the 482 surface swabs produced positive results and none of them contained virus particles capable of replication, indicating that positive samples contained inactive virus particles and/or fragments. Measurements of the rate of decay of SARS-CoV-2 on frequently touched surface materials showed that the virus did not remain viable longer than 1-4 h. The rate of inactivation was the fastest on rubber handrails in metro escalators and the slowest on hard-plastic seats, window glasses and stainless-steel grab rails. As a result of this study, Prague Public Transport Systems revised their cleaning protocols and the lengths of parking times during the pandemic. CONCLUSIONS: Our findings suggest that surface transmission played no or negligible role in spreading SARS-CoV-2 in Prague. The results also demonstrate the potential of the new biosensor to serve as a complementary screening tool in epidemic monitoring and prognosis.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Respiratory Aerosols and Droplets , Transportation , Pandemics/prevention & control
5.
Commun Biol ; 6(1): 517, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179447

ABSTRACT

Dermanyssus gallinae is a blood-feeding mite that parasitises wild birds and farmed poultry. Its remarkably swift processing of blood, together with the capacity to blood-feed during most developmental stages, makes this mite a highly debilitating pest. To identify specific adaptations to digestion of a haemoglobin-rich diet, we constructed and compared transcriptomes from starved and blood-fed stages of the parasite and identified midgut-enriched transcripts. We noted that midgut transcripts encoding cysteine proteases were upregulated with a blood meal. Mapping the full proteolytic apparatus, we noted a reduction in the suite of cysteine proteases, missing homologues for Cathepsin B and C. We have further identified and phylogenetically analysed three distinct transcripts encoding vitellogenins that facilitate the reproductive capacity of the mites. We also fully mapped transcripts for haem biosynthesis and the ferritin-based system of iron storage and inter-tissue trafficking. Additionally, we identified transcripts encoding proteins implicated in immune signalling (Toll and IMD pathways) and activity (defensins and thioester-containing proteins), RNAi, and ion channelling (with targets for commercial acaricides such as Fluralaner, Fipronil, and Ivermectin). Viral sequences were filtered from the Illumina reads and we described, in part, the RNA-virome of D. gallinae with identification of a novel virus, Red mite quaranjavirus 1.


Subject(s)
Mite Infestations , Mites , Poultry Diseases , Animals , Poultry , Mite Infestations/veterinary , Mite Infestations/parasitology , RNA-Seq , Virome , Chickens , Mites/genetics
6.
Sci Immunol ; 8(81): eade0958, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36701425

ABSTRACT

Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Epitopes , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Neutralization Tests
7.
Virus Res ; 324: 199020, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36528170

ABSTRACT

Matrix metalloproteinases (MMPs) play an important role in central nervous system infections. We analysed the levels of 8 different MMPs in the cerebrospinal fluid (CSF) of 89 adult patients infected with tick-borne encephalitis (TBE) virus and compared them with the levels in a control group. MMP-9 was the only MMP that showed significantly increased CSF levels in TBE patients. Serum MMP-9 levels were subsequently measured in 101 adult TBE patients at various time points during the neurological phase of TBE and at follow-up. In addition, serum MMP-9 was analysed in 37 paediatric TBE patients. Compared with control levels, both paediatric and adult TBE patients had significantly elevated serum MMP-9 levels. In most adult patients, serum MMP-9 levels peaked at hospital admission, with higher serum MMP-9 levels observed in patients with encephalitis than in patients with meningitis. Elevated serum MMP-9 levels were observed throughout hospitalisation but decreased to normal levels at follow-up. Serum MMP-9 levels correlated with clinical course, especially in patients heterozygous for the single-nucleotide polymorphism rs17576 (A/G; Gln279Arg) in the MMP9 gene. The results highlight the importance of MMP-9 in the pathogenesis of TBE and suggest that serum MMP-9 may serve as a promising bioindicator of TBE in both paediatric and adult TBE patients.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Adult , Child , Humans , Biomarkers , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/cerebrospinal fluid , Matrix Metalloproteinase 9/genetics , Polymorphism, Single Nucleotide
8.
Viruses ; 14(12)2022 11 29.
Article in English | MEDLINE | ID: mdl-36560677

ABSTRACT

The tick-borne encephalitis virus (TBEV) causes a most important viral life-threatening illness transmitted by ticks. The interactions between the virus and ticks are largely unexplored, indicating a lack of experimental tools and systematic studies. One such tool is recombinant reporter TBEV, offering antibody-free visualization to facilitate studies of transmission and interactions between a tick vector and a virus. In this paper, we utilized a recently developed recombinant TBEV expressing the reporter gene mCherry to study its fitness in various tick-derived in vitro cell cultures and live unfed nymphal Ixodes ricinus ticks. The reporter virus was successfully replicated in tick cell lines and live ticks as confirmed by the plaque assay and the mCherry-specific polymerase chain reaction (PCR). Although a strong mCherry signal determined by fluorescence microscopy was detected in several tick cell lines, the fluorescence of the reporter was not observed in the live ticks, corroborated also by immunoblotting. Our data indicate that the mCherry reporter TBEV might be an excellent tool for studying TBEV-tick interactions using a tick in vitro model. However, physiological attributes of a live tick, likely contributing to the inactivity of the reporter, warrant further development of reporter-tagged viruses to study TBEV in ticks in vivo.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Ixodes , Animals , Encephalitis Viruses, Tick-Borne/genetics , Cell Line , Polymerase Chain Reaction , Models, Theoretical
9.
bioRxiv ; 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36482967

ABSTRACT

Emergence of SARS-CoV-2 variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera , including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization and, like fp.006 and hr2.016, protects mice when present as bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae , including SARS-CoV-2 variants. One sentence summary: Broadly cross-reactive antibodies that protect from SARS-CoV-2 variants are revealed by virus coldspot-driven discovery.

10.
J Gen Virol ; 103(5)2022 05.
Article in English | MEDLINE | ID: mdl-35506983

ABSTRACT

Extensive axonal and neuronal loss is the main cause of severe manifestations and poor outcomes in tick-borne encephalitis (TBE). Phosphorylated neurofilament heavy subunit (pNF-H) is an essential component of axons, and its detection in cerebrospinal fluid (CSF) or serum can indicate the degree of neuroaxonal damage. We examined the use of pNF-H as a biomarker of neuroaxonal injury in TBE. In 89 patients with acute TBE, we measured CSF levels of pNF-H and 3 other markers of brain injury (glial fibrillary acidic protein, S100B and ubiquitin C-terminal hydrolase L1) and compared the results to those for patients with meningitis of other aetiology and controls. Serum pNF-H levels were measured in 80 patients and compared with findings for 90 healthy blood donors. TBE patients had significantly (P<0.001) higher CSF pNF-H levels than controls as early as hospital admission. Serum pNF-H concentrations were significantly higher in samples from TBE patients collected at hospital discharge (P<0.0001) than in controls. TBE patients with the highest peak values of serum pNF-H, exceeding 10 000 pg ml-1, had a very severe disease course, with coma or tetraplegia. Patients requiring intensive care had significantly higher serum pNF-H levels than other TBE patients (P<0.01). Elevated serum pNF-H values were also observed in patients with incomplete recovery (P<0.05). Peak serum pNF-H levels correlated positively with the duration of hospitalization (P=0.005). Measurement of pNF-H levels in TBE patients might be useful for assessing disease severity and determining prognosis.


Subject(s)
Encephalitis, Tick-Borne , Biomarkers , Disease Progression , Encephalitis, Tick-Borne/diagnosis , Humans , Intermediate Filaments , Prognosis
11.
EBioMedicine ; 76: 103818, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35078012

ABSTRACT

BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.


Subject(s)
Antibodies, Monoclonal/immunology , Antineoplastic Agents, Immunological/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antigenic Drift and Shift , Antineoplastic Agents, Immunological/therapeutic use , COVID-19/virology , Disease Models, Animal , Humans , Kinetics , Lung/pathology , Mice , Mutation , Neutralization Tests , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
12.
Sci Rep ; 12(1): 491, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017574

ABSTRACT

Up to 170 tick-borne viruses (TBVs) have been identified to date. However, there is a paucity of information regarding TBVs and their interaction with respective vectors, limiting the development of new effective and urgently needed control methods. To overcome this gap of knowledge, it is essential to reproduce transmission cycles under controlled laboratory conditions. In this study we assessed an artificial feeding system (AFS) and an immersion technique (IT) to infect Ixodes ricinus ticks with tick-borne encephalitis (TBE) and Kemerovo (KEM) virus, both known to be transmitted predominantly by ixodid ticks. Both methods permitted TBEV acquisition by ticks and we further confirmed virus trans-stadial transmission and onward transmission to a vertebrate host. However, only artificial feeding system allowed to demonstrate both acquisition by ticks and trans-stadial transmission for KEMV. Yet we did not observe transmission of KEMV to mice (IFNAR-/- or BALB/c). Artificial infection methods of ticks are important tools to study tick-virus interactions. When optimally used under laboratory settings, they provide important insights into tick-borne virus transmission cycles.


Subject(s)
Arachnid Vectors/virology , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/transmission , Ixodes/virology , Orbivirus/physiology , Reoviridae Infections/transmission , Virology/methods , Animals , Arachnid Vectors/physiology , Encephalitis, Tick-Borne/virology , Host-Pathogen Interactions , Humans , Ixodes/physiology , Mice , Mice, Inbred BALB C , Reoviridae Infections/virology
13.
ACS Appl Mater Interfaces ; 13(50): 60612-60624, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34902239

ABSTRACT

New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses. Here, we report on an antifouling terpolymer-brush biointerface that enables the rapid and sensitive detection of SARS-CoV-2 in untreated clinical samples. The developed biointerface carries a tailored composition of zwitterionic and non-ionic moieties and allows for the significant improvement of antifouling capabilities when postmodified with biorecognition elements and exposed to complex media. When deployed on a surface of piezoelectric sensor and postmodified with human-cell-expressed antibodies specific to the nucleocapsid (N) protein of SARS-CoV-2, it made possible the quantitative analysis of untreated samples by a direct detection assay format without the need of additional amplification steps. Natively occurring N-protein-vRNA complexes, usually disrupted during the sample pre-treatment steps, were detected in the untreated clinical samples. This biosensor design improved the bioassay sensitivity to a clinically relevant limit of detection of 1.3 × 104 PFU/mL within a detection time of only 20 min. The high specificity toward N-protein-vRNA complexes was validated both by mass spectrometry and qRT-PCR. The performance characteristics were confirmed by qRT-PCR through a comparative study using a set of clinical nasopharyngeal swab samples. We further demonstrate the extraordinary fouling resistance of this biointerface through exposure to other commonly used crude biological samples (including blood plasma, oropharyngeal, stool, and nasopharyngeal swabs), measured via both the surface plasmon resonance and piezoelectric measurements, which highlights the potential to serve as a generic platform for a wide range of biosensing applications.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Nasal Mucosa/virology , Polymers/chemistry , RNA, Viral/metabolism , SARS-CoV-2 , Biofouling , Biological Assay , Biosensing Techniques , Humans , Ions , Limit of Detection , Mass Spectrometry , Nasopharynx/virology , Phosphoproteins/chemistry , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Specimen Handling
14.
Viruses ; 13(10)2021 10 09.
Article in English | MEDLINE | ID: mdl-34696468

ABSTRACT

Dogs are frequently infected with the tick-borne encephalitis virus (TBEV). However, to date, only a few clinically manifest cases of tick-borne encephalitis (TBE) have been reported in dogs. In this study, three-month-old beagle dogs were infected with TBEV through a subcutaneous injection. Body temperature, clinical signs, blood haematology, blood biochemistry, and immune responses were monitored for up to 28 days postinfection (p.i.). No changes in body temperature or clinical signs were observed in the infected dogs. Most haematology and blood biochemistry parameters were unchanged after the infection, except for a slight reduction in blood lymphocyte counts, but they were within the physiological range. Low-titre viraemia was detected in 2/4 infected dogs between days 1 and 3 p.i. All infected dogs developed a robust immune response, in terms of neutralising antibodies. Thus, TBEV infections lead to effective seroconversion in dogs. Next, to assess TBEV exposure in dogs in the TBEV-endemic region of the Czech Republic, we conducted a serosurvey. Virus neutralisation tests revealed TBEV-specific antibodies in 17 of 130 (13.07%) healthy dogs, which confirmed a high, but clinically inappreciable TBEV exposure rate in the endemic area. The seropositivity rate was similar (12.7%; 41 positives out of 323) in a subgroup of dogs with various clinical disorders, and it was 13.4% (23 out of 171) in a subgroup of dogs with signs of acute neurological disease. Two dogs with fatal acute meningoencephalitis showed positive results for TBEV-specific IgM and IgG antibodies. These data extended our understanding of the clinical presentation of TBEV infections.


Subject(s)
Dog Diseases/diagnosis , Dog Diseases/virology , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/veterinary , Encephalitis, Tick-Borne/virology , Animals , Antibodies, Viral/blood , Czech Republic , Disease Models, Animal , Dog Diseases/immunology , Dogs , Encephalitis, Tick-Borne/immunology , Female , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , Viral Zoonoses/diagnosis , Viral Zoonoses/immunology , Viral Zoonoses/virology
16.
Front Vet Sci ; 8: 659786, 2021.
Article in English | MEDLINE | ID: mdl-33842580

ABSTRACT

Spiroplasma are vertically-transmitted endosymbionts of ticks and other arthropods. Field-collected Ixodes persulcatus have been reported to harbour Spiroplasma, but nothing is known about their persistence during laboratory colonisation of this tick species. We successfully isolated Spiroplasma from internal organs of 6/10 unfed adult ticks, belonging to the third generation of an I. persulcatus laboratory colony, into tick cell culture. We screened a further 51 adult male and female ticks from the same colony for presence of Spiroplasma by genus-specific PCR amplification of fragments of the 16S rRNA and rpoB genes; 100% of these ticks were infected and the 16S rRNA sequence showed 99.8% similarity to that of a previously-published Spiroplasma isolated from field-collected I. persulcatus. Our study shows that Spiroplasma endosymbionts persist at high prevalence in colonised I. persulcatus through at least three generations, and confirms the usefulness of tick cell lines for isolation and cultivation of this bacterium.

17.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33831141

ABSTRACT

Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI-EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/immunology , Immunoglobulin G/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Viral/administration & dosage , Antibodies, Viral/genetics , Cells, Cultured , Cohort Studies , Cross Reactions/immunology , Encephalitis Viruses, Tick-Borne/drug effects , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/prevention & control , Encephalitis, Tick-Borne/virology , Epitopes/immunology , Female , Humans , Immunoglobulin G/administration & dosage , Mice, Inbred BALB C , Sequence Homology, Amino Acid , Survival Analysis , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
18.
Nature ; 593(7859): 424-428, 2021 05.
Article in English | MEDLINE | ID: mdl-33767445

ABSTRACT

Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-191,2. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-193. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/virology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/therapeutic use , Body Weight , COVID-19/prevention & control , Dependovirus/genetics , Disease Models, Animal , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Female , Humans , Immune Evasion/genetics , Mice , Mice, Inbred C57BL , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Drug Treatment
19.
Vaccines (Basel) ; 9(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652698

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. In this study we tested in mice the efficacy of preinfection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally avirulent TBEV strain (TBEV-280) in providing protection against lethal infection with the highly virulent TBEV strain (referred to as TBEV-Hypr). We show that prior infection with TP21 or TBEV-280 is efficient in protecting mice from lethal TBEV-Hypr challenge. Histopathological analysis of brains from nonimmunized mice revealed neuronal TBEV infection and necrosis. Neuroinflammation, gliosis, and neuronal necrosis was however also observed in some of the TP21 and TBEV-280 preinfected mice although at reduced frequency as compared to the nonimmunized TBEV-Hypr infected mice. qPCR detected the presence of viral RNA in the CNS of both TP21 and TBEV-280 immunized mice after TBEV-Hypr challenge, but significantly reduced compared to mock-immunized mice. Our results indicate that although TBEV-Hypr infection is effectively controlled in the periphery upon immunization with low-virulent LGTV or naturally avirulent TBEV 280, it may still enter the CNS of these animals. These findings contribute to our understanding of causes for vaccine failure in individuals vaccinated with TBE vaccines.

20.
bioRxiv ; 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33501434

ABSTRACT

Neutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19) 1,2 . We developed a bispecific, IgG1-like molecule (CoV-X2) based on two antibodies derived from COVID-19 convalescent donors, C121 and C135 3 . CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor. Furthermore, CoV-X2 neutralizes SARS-CoV-2 and its variants of concern, as well as the escape mutants generated by the parental monoclonals. In a novel animal model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, combining into a single molecule the advantages of antibody cocktails.

SELECTION OF CITATIONS
SEARCH DETAIL
...